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The electronic properties of a bricklayer model, which shares the same topology as the hexagonal lattice of
graphene, are investigated numerically. We study the influence of random magnetic-field disorder in addition to
a strong perpendicular magnetic field. We found a disorder-driven splitting of the longitudinal conductance
peak within the narrow lowest Landau band near the Dirac point. The energy splitting follows a relation which
is proportional to the square root of the magnetic field and linear in the disorder strength. We calculate the scale
invariant peaks of the two-terminal conductance and obtain the critical exponents as well as the multifractal
properties of the chiral and quantum Hall states. We found approximate values ��2.5 for the quantum Hall
states but �=0.33�0.1 for the divergence of the correlation length of the chiral state at E=0 in the presence
of a strong magnetic field. Within the central n=0 Landau band, the multifractal properties of both the chiral
and the split quantum Hall states are the same, showing a parabolic f���s�� distribution with ��0�
=2.27�0.02. In the absence of the constant magnetic field, the chiral critical state is determined by ��0�
=2.14�0.02.
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I. INTRODUCTION

The nature of the current carrying states near the charge-
neutral Dirac point in graphene is of exceptional interest and
substantial importance for the understanding of the electrical
transport properties in strong magnetic fields. The experi-
mental observation of quantum Hall plateaus1–6 with �xy
= �2N+1�2e2 /h , N=0,1 , . . . strikingly emphasizes the sig-
nificance of disorder, which influences the single sheet of
carbon atoms forming the hexagonal lattice of graphene. Due
to the two valleys appearing in the band structure, each Lan-
dau band contributes two times 2e2 /h to the Hall conductiv-
ity �xy, whereas the factor of 2 accounts for the spin degen-
eracy.

In the absence of a magnetic field, simple on-site �diago-
nal� disorder gives rise to strong Anderson localization,
which causes the electrical current to vanish at zero
temperatures.7,8 This is, however, in conflict with experimen-
tal observations1–3,6,9 demonstrating that either a different
type of disorder is present in real samples or that electron-
electron interaction renders the one-particle picture obsolete.
A disorder type being able to account for a finite conduc-
tance is the ripple disorder9,10 which is believed11,12 to create
similar effects as those originating from fluctuations of the
hopping terms due to elastic strains of the intrinsic curva-
tures of the graphene sheet. It is also well known that the
intervalley scattering depends crucially on the type of
disorder.13–17

Recently, a splitting of the conductivity maximum within
the central Landau band at the Dirac point has been observed
in high mobility graphene samples for very strong magnetic-
flux densities B�20 T.3,5,6,18 The measured energy splitting
�E	�B has been suggested6 to be due to a lifting of the
sublattice symmetry caused by electron-electron interaction.
Also, the effect of counterpropagating chiral edge states,18

electron-lattice effects,19 as well as valley ferro-
magnetism20–24 have been put forward to account for the

observed splitting near the Dirac point. Although the pro-
posed approaches contain many interesting physics based on
interaction effects, we would like to retain the noninteracting
particle picture in the present work and investigate the influ-
ence of a random magnetic field �RMF� which causes similar
effects as ripple disorder.11,12 Recently, the influence of real
random hopping terms was studied and a splitting of the
extended state in the n=0 Landau band has been reported.25

However, the experimentally observed extremely narrow
Landau band3,5,6,18 at the Dirac point suggests the origin of
the Landau-level broadening to be ripple disorder or an
equivalent disorder that also preserves the chiral symmetry.26

By using a microscopic bricklayer model, which is topo-
logically equivalent27,28 to a hexagonal lattice, and assuming
a random magnetic-flux disorder by introducing complex
phases into the hopping terms of a tight-binding Hamil-
tonian, we found a narrow density-of-states peak at the Dirac
point and a splitting of the central conductance peak similar
to what has been observed in experiments. We calculate the
density of states, the two-terminal conductance, and the criti-
cal eigenstates from which the respective energy and
magnetic-field dependence of the energy splitting, the scaling
of the conductance, and the multifractal properties of the
critical eigenstates are obtained. The splitting �E increases
linearly with the strength of the random flux amplitude and
shows a �B dependence as observed in experiments. Besides
the split quantum Hall conductance peak, we found a central
chiral state at E=0. The latter exhibits a critical exponent �
=0.33�0.1, which determines the divergence of the local-
ization length 
 /
0= �E�−�, whereas the remaining two split
bands of the central Landau level belong to the ordinary
quantum Hall symmetry class with a critical exponent �
�2.5. The calculated multifractal properties turn out to de-
pend on the static magnetic field. For B=0, we found ��0�
=2.14 for the chiral state at the Dirac point. This value
changes to the usual quantum Hall result ��0�=2.27 in the
presence of a spatially constant magnetic field.
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II. BRICKLAYER MODEL AND TRANSFER MATRIX
METHOD

Graphene can be represented by a tight-binding Hamil-
tonian defined on a two-dimensional honeycomb lattice. In
our numerical calculations, the honeycomb lattice is trans-
formed into a bricklayer lattice as shown in Fig. 1. Each site
is connected by three bonds with its nearest neighbors and
has the same topology as the hexagonal lattice.27,28 For in-
vestigations of the spectral properties, the differences in
bond length and bond angle do not matter. In other cases the
length scale has to be properly adjusted, e.g., for the
plaquette size 2a2 �bricklayer� and �3�3 /2�a2 �hexagonal lat-
tice�, where a is the respective nearest-neighbor distance.

A magnetic field perpendicular to the xz plane creates a
magnetic flux through each individual plaquette,

�x,z =
p

q
h/e + �x,z, �1�

where p and q are integers which are mutual prime, and �x,z
is the random flux component. The latter is assumed to be
due to ripples and to the buckling of the nonplanar carbon
monolayer which causes the magnetic flux to fluctuate from
plaquette to plaquette. Since the plaquette size on the brick-
layer system is twice that of the square lattice, the magnetic-
flux density is B= p /qh / �e2a2�. We choose �x,z to be uni-
formly distributed according to −f /2��x,z / �h /e�� f /2 so
that the mean value ��xz	 is zero and the variance is f2 /12.
The parameter f measures the strength of the disorder with a
maximal value f =1.

The corresponding tight-binding Hamiltonian, with spin-
less fermionic particle creation �c†� and annihilation �c� op-
erators, on the bricklayer is

H = V

x,z

�ei�x,zcx,z
† cx+a,z + e−i�x−a,zcx,z

† cx−a,z

+ V

x,z

cx,z
† cx,z+a + cx,z

† cx,z−a. �2�

The complex phase factors along the vertical bonds of a
given plaquette are determined by the respective flux,

�x,z+2a−�x,z=2��x,z. We fix the length scale by a=1 and set
V=1, which defines the energy scale. Please note that the
first sum 
� in Eq. �2� contains only the nonzero vertical
hopping terms as shown in Fig. 1. An important property of
the random flux model is that its disorder does not destroy
the chiral symmetry of the system at the band center
E=0.29–32 Thus, the Hamiltonian �2� enables us to study both
the chiral and the quantum Hall critical regimes within the
same model.

For the calculation of the conductance, the samples are
attached to two semi-infinite leads, which are constructed by
a two-dimensional square lattice. No magnetic field is con-
sidered within the two leads. Periodic boundary conditions
are assumed in the vertical �x� direction in order to eliminate
surface effects and edge states in the quantum Hall regime.
This requires the number of sites in the vertical direction to
be even and a multiple of 2q.

The two-terminal conductance is calculated by the well-
known transfer-matrix method33

g = Tr t†t = 

i

Nch 1

cosh2��i/2�
, �3�

where Nch is the number of open channels, t is the transmis-
sion matrix, and the �i parametrize its eigenvalues. Statistical
ensembles of typically Nstat=104 samples were collected and
the mean value of the conductance was calculated for each
set of parameters �E ,L , f , p /q�. The transformation of the
honeycomb lattice into the bricklayer changes the length
scale along the propagation direction, which is due to the
rectangular shape of the unit cell. For computational effi-
ciency, we still consider LL bricklayer lattices. We verified
that for different shapes the conductance scales like gc
�Lx /Lz at all critical points. Hence the conductance results
we show are always by a factor of two larger. Therefore, it is
easy to correct for our special aspect ratio when comparing
with conductance results obtained by other researchers.

III. RESULTS AND DISCUSSION

A. Density of states

The density of states ��E� was calculated by counting the
eigenvalues obtained from diagonalization of L2=128128
samples with periodic boundary conditions in both direc-
tions, averaged over 500 disorder realizations. Without dis-
order, ��E� was checked to be identical with the result of a
true honeycomb lattice. Figure 2 shows ��E� for p /q=1 /32
flux quantum and several disorder strengths f =0.001, 0.002,
0.003, and 0.005. Due to the symmetry around E=0, the
density of states is shown only for energies E�0. The Lan-
dau spectrum and the broadening of the bands are visible.
However, compared with the n=1 and n=2 Landau bands,
the central n=0 one remains very narrow and is hardly dis-
cernible. Therefore, in the inset of Fig. 2, the broadening of
the narrow central band is shown in more detail where also
the chiral peak at E=0 is distinguishable in the middle of the
broadened Landau band. A real splitting of the n=0 Landau
band becomes apparent only for very small disorder strength
f . The total width at half height of the central band �neglect-

z

x

FIG. 1. �Color online� The two-dimensional bricklayer lattice
which shares the same topology as the hexagonal lattice of
graphene. The biatomic unit cell is indicated by the dashed rect-
angle. For the calculation of the conductance, the sample is con-
nected to two semi-infinite leads �thin lines� with square lattice
topology, and periodic boundary conditions are applied in the ver-
tical direction �top vertical lines are connected to sites in the lowest
horizontal line�.
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ing the narrow chiral peak� is proportional to �p /qf . It
should be noted that the degeneracy of the n=0 Landau level
found in the Dirac model, even in the presence of a random
magnetic field,34 is already lifted in our clean lattice model
due to Harper’s broadening.35 In the case B=0, this lattice
effect also causes deviations from the linear energy disper-
sion away from the Dirac point.

Since the number of eigenvalues is the same for each
principle band shown in Fig. 2, the two split n=0 subbands
must contain less eigenvalues than the higher Landau bands
due to the additional chiral states close to the Dirac point
E=0.

B. Conductance peak splitting

The energy dependence of the disorder averaged two-
terminal conductance is shown in Fig. 3 for different random
magnetic-field disorder strengths f . Again, only the positive
energies are shown because the conductance is an even func-
tion of the energy E. With increasing f , the conductance
peaks corresponding to the n=0 Landau level, with peak

value of about 1.12e2 /h, move away from E=0, where the
conductance peak of the scale independent chiral state re-
mains fixed at g�E=0�=1.27e2 /h. The disorder induced
splitting �E of the n=0 conductance peak is plotted in Fig. 4
versus f for various magnetic fields with p /q=1 /24, 1/32,
1/64, and 1/128. For not too large f , the data points follow
the straight solid lines which are given by the relation

�E =�p

q
f . �4�

Therefore, the conductance peak splitting shows a �B behav-
ior as observed in experiments and increases linearly with
the strength f of the random magnetic-flux disorder. Neither
a splitting nor any shift of the conductance peak due to the
disorder f investigated could be observed for the n=1 Lan-
dau band and L�256.

As known from experiment,36 the minimum conductivity
at the Dirac point depends verifiably on disorder. Therefore,
in Fig. 5 we show the disorder dependence of the critical
chiral conductance �g�E=0, f�	 for different magnetic fields.
The two values 4 /��e2 /h� and 8 /��e2 /h� are indicated by
solid horizontal lines. The conductance turns out to be scale
invariant for sufficiently strong random flux disorder. In the
limit of f →1.0, �g�E=0�	 converges to a common value that
is a little larger than 8 /��e2 /h�, which is independent of
magnetic field. In contrast, a magnetic-field dependence is
seen for small f . In the range 0.001� f �0.4, the conduc-
tance seems to approach a value somewhat smaller than
4 /��e2 /h� for all magnetic fields p /q�1 /32 studied. For
small disorder, e.g., f =0.1 and B=0, the conductance scales
with the sample size. A convergence to a value �4 /��e2 /h�
as in the finite B case is compatible with our data.

In a finite clean system, �g�E=0, f =0�	 is zero for B
=0 but increases with the system size for finite B. The former
behavior is due to the vanishing density of states at E=0 in
the absence of a magnetic field. In the thermodynamic limit,
the result for the conductance seems to depend on the order
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FIG. 2. �Color online� The density of states for LL bricklayer
samples with size L=128, averaged over 500 disorder realizations,
showing three Landau bands closest to the Dirac point for energy
E�0. The random flux disorder strengths are f =0.001, 0.002,
0.005, 0.007, and 0.015, and p /q=1 /32. The inset shows the broad-
ening of the narrow central Landau band together with the chiral
state at E=0 for f =0.001, 0.002, 0.003, and 0.005.
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FIG. 3. �Color online� The energy dependence of the disorder
averaged two-terminal conductance �g�E�	 for E�0, p /q=1 /32,
and various random flux disorder strengths f . The size of the square
samples is L=128. Besides the conductance peak of the chiral state,
which remains at E=0, the shift of the split quantum Hall state with
disorder is depicted.
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FIG. 4. �Color online� The splitting of the conducting states
from the n=0 Landau band obtained from the two-terminal conduc-
tance of L=256 square samples versus random magnetic-field dis-
order strengths f . The magnetic fields are p /q=1 /24 ���, p /q
=1 /32 ���, p /q=1 /64 ���, and p /q=1 /128 ���, respectively. The
straight lines follow �E=�p /qf .
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of limits L→� and f →0. A special case appears in the clean
limit if Lz is a multiple of three. �g�E=0, f =0�	 turns out to
be 2e2 /h due to the four eigenstates appearing at E=0 for
kz=� /3, where kz=N� /Lz and N=1,2 , . . .. This agrees well
with the experimentally observed minimal conductivity
�min=4e2 /h if the electron spin is taken into account.

C. Critical quantum Hall regime

The energetic position of the split conductance peak
within the n=0 Landau band as shown in Fig. 3 was esti-
mated from the energy and size dependences of the conduc-
tance peak. For all values of disorder strength f , the conduc-
tance g�E� exhibits a maximum around the critical energy
Ec�f�. The maximal value of the conductance is gc
�1.12e2 /h. If we take into account the factor of two due to
the special aspect ratio, this value is in agreement with the
critical conductance gc=0.6e2 /h found on the square lattice
with spatial correlated diagonal disorder.37 Likewise, it com-
pares well with the results gc=2 /�e2 /h obtained within a
self-consistent Born approximation by Shon and Ando38 for a
graphene sheet in the presence of short- or long-range scat-
tering potentials. Finally, our result for the split conductance
peak agrees also with the analytical calculations of Ostro-
vsky and co-workers.13,15,16

A more detailed analysis of the size and energy depen-
dences of the conductance shows that g�E� exhibits a pro-
nounced maximum around the disorder dependent critical
energy Ec�f�. This renders the estimation of the correspond-
ing critical exponent possible. The peak g�E , f� becomes nar-
rower when the size L of the system increases. Following the
scaling theory of localization, the conductance is assumed to
be a function of only one parameter in the vicinity of the
critical point, �g	=F�L /
�E��, with a diverging correlation
length 
�E�	 �E−Ec�−�. Then, we can extract the critical
value of the conductance and the critical exponent assuming
that

�g	 = gc − A�L��E − Ec�2, �5�

and

A�L� 	 L2/�. �6�

Figure 6 shows the size and energy dependence of the con-
ductance peak for disorder f =0.1. We obtained a critical ex-
ponent ��2.5 when only the data for L�384 were used in
the scaling analysis. We observed a similar behavior for
smaller disorder strength f =0.01. In view of the uncertain-
ties, we consider this to be consistent with the well-known
results �=2.3 for ordinary quantum Hall systems supporting
the view of the universality of the continuous quantum Hall
phase transition.

The two-terminal conductance for the n=1 Landau band
is shown in Fig. 7 versus energy. The peak value is about
1.87e2 /h. The maximal available size of the system �L
=512� is still insufficient for a more accurate estimation of
the critical parameters. Therefore, we can neither give any
limiting value nor address the Landau-level dependence of
the critical conductance. The very slow L dependence of the
conductance in the critical region, indicating a larger local-
ization length than for the n=0 case, makes the scaling
analysis and estimation of critical exponent impossible.

D. Critical chiral state

From the energy and size dependences of the mean con-
ductance in the vicinity of the chiral critical point, we extract
the critical conductance, gc=limL→��g�E=0,L�	. Our data
for the mean conductance �g	 at the band center E=0 exhibit
a convergence to the size independent limit gc,
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�g�E = 0,L�	 = gc + b/L . �7�

As shown in the inset of Fig. 8, gc�1.267e2 /h. This per-
fectly agrees with the theoretically predicted value
4 /�e2 /h=1.273e2 /h for the spin-degenerate situation.13,15,16

We mention again that in our case the factor of two origi-
nates not from the spin but from the special aspect ratio used.

To estimate the conductance fluctuations, we calculated
the probability distribution p�g� which proved to be Gauss-
ian, confirming the presence of mesoscopic fluctuations also

at the chiral critical point. The variance var g= �g2	− �g	2

varies slightly as a function of B and f . For instance, we
found var g�0.23�e2 /h�2 for the data shown in Fig. 8 but
0.21�e2 /h�2 for the B=0 case �Fig. 9�.

To analyze the critical behavior of the conductance in the
vicinity of the band center, we calculated �g	 for square
samples of size L=64, 128, 192, 256, and 384, within the
narrow energy interval 10−9�E�10−4. Our data confirm
that, after finite-size correction �7�, the mean conductance is
a function of one parameter only, �g�E ,L�	=G�EL1/��. Fol-
lowing scaling theory, � is the critical exponent that governs
the divergence of the correlation length, 
�E�	 �E�−�. A more
detailed analysis shows that

G�x� = gc − c0 ln�1 + c1x + c2x2� , �8�

with c0=0.05, c1=−0.02944, and c2=0.02134. Scaling analy-
sis provides us with the critical exponent �=0.33�0.1. Al-
though the best scaling is obtained for �=0.33 �as shown in
Fig. 8�, a reasonable scaling is also possible for values of the
critical exponent in the range 0.25���0.45. Again, only
numerical data for much larger systems would reduce this
inaccuracy.

We have carefully checked that our estimate of � is insen-
sitive to the range of the energy interval selected. Also, we
tried to compensate for the observed divergence of the criti-
cal density of states near E=0, which, however, changed our
estimates only marginally. We mention that our result does
not satisfy the Harris criterion,39 which states that d�−2
�0. There are similar results also for other models40–45 with
chiral critical exponents ��1.
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shows the size dependence of g�E=0� for 128�L�960. The solid
line is g�L� / �e2 /h�=2.62–11.48 /L, and var g�0.21�e2 /h�2.
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In the absence of a constant magnetic field, we observed
that the value of the conductance at E=0 depends consider-
ably on the size of the system, g�L�=2.62–11.48 /L. Even
worse, the scaling behavior is fulfilled only in a very narrow
interval of conductance values. From Fig. 9 we see that the
width of the scaling interval is comparable with the uncer-
tainty in the conductance due to the finite-size effects. It is
therefore no surprise that the estimation of the critical expo-
nent is much more difficult. Taking into account these re-
strictions, we conclude that the estimated value of the critical
exponent ��0.42 is still in reasonable agreement with the
previously obtained values �=0.35 and �=0.42 for a normal
square lattice.44,45

E. Multifractal eigenstates

The critical eigenfunctions �E�r� of bricklayer samples
with sizes up to L2=384384 were obtained numerically
using a Lanczos algorithm. For eigenvalues close to E=0,
the chiral eigenstates show the expected sublattice polariza-
tion since for a clean system the wave functions are nonzero
only on one of the sublattices.25,46 This sublattice polariza-
tion is still observable in the presence of both the fluctuating
random flux and the constant perpendicular magnetic field.
We also notice some weak quasi-one-dimensional structures
making the appearance of ��E=0�r��2 look slightly anisotropic.

A similar behavior is found for the n=0 critical quantum
Hall states, as well. This is shown in Fig. 10 where the
squared amplitude of a characteristic eigenstate with energy
E=0.0168 15 is displayed for a L=320 sample with p /q
=1 /32 and RMF strength f =0.1. A closer inspection reveals
an approximate sublattice polarization, also in this case. This
effect appears to be stronger than in the diagonal disordered
situation.46

The multifractal analysis was carried out as usual by
utilizing the well-known box counting method where the

scaling of a “box probability” is calculated, P�s ,��
=
i

N�l��
r��i�l�
��E�r��2�s����s�, from which the generalized

fractal dimensions D�s�=��s� / �s−1� or, by a Legendre trans-
form, the so-called f���s�� distribution can be derived.47,48

Here, �i�l� is the ith box of size l=�L from which the sth
moment of the modulus of the normalized eigenstate �E�r� is
taken.

In Fig. 11 we show the f���s�� distribution of two d=2
chiral eigenstates at E�0 in comparison with the parabolic
approximation, f���s��=d− ���s�−��0��2 / 4���0�−d��,
which for finite systems is normally valid only for small �s�.
We found a value ��0�=2.14�0.02 when averaged over
several critical chiral states in the case B=0. This value turns
out to be close to the one obtained previously for a square
lattice with correlated random magnetic field.49 For finite B,
we found an averaged ��0�=2.27�0.02 which is the same
as the ��0� value of the n=0 quantum Hall states. This result
also agrees with ��0� values published for various quantum
Hall models in the range 2.26���0��2.29.50–53 For the n
=1 quantum Hall state the achievable system sizes were not
sufficient for the calculation of a conclusive multifractal
spectrum.

We finally mention that we also checked the E=2.9725
critical eigenstates within the Landau band closest to the
tight-binding band edge in the presence of diagonal disorder.
These outer states do not belong to the Dirac fermion se-
quence that can be found only in the energy range −1.0
�E�1.0. Again, we obtained the ordinary quantum Hall
multifractality with ��0��2.29 and a critical conductance
gc�1.0e2 /h �including the aspect ratio factor of 2�.

IV. CONCLUSIONS

We investigated numerically a two-dimensional bricklayer
lattice model, which shares the same topology as graphene’s
hexagonal lattice, in the presence of both a homogeneous
and a spatially fluctuating random magnetic field. We calcu-
lated the one-particle density of states, the two-terminal con-

FIG. 10. �Color online� The probability density of a character-
istic critical quantum Hall eigenstate of the n=0 Landau band at
E=0.0168 15. The system size is L=320, constant magnetic field is
p /q=1 /32, and random magnetic-field strength is f =0.1.

α(s)

f
(α

(s
))

43.532.521.51

2

1.5

1

0.5

0

FIG. 11. �Color online� The f���s�� distributions for two chiral
eigenstates with energy close to E=0. The parabolas are determined
by the values ��0�=2.14 in the case of B=0, f =1.0 ��, and
��0�=2.265 for p /q=1 /32, f =0.5 �+�, respectively. In both cases,
the system size is L=320. The data points correspond to s= �4.0,
�3.0, �2.5, �2.0, �1.5, �1.0, �0.5, and 0.0.
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ductance, and the multifractal properties of critical eigen-
states. Within the very narrow n=0 Landau band, we found a
splitting of the two-terminal conductance peak into three
subpeaks. A central chiral conductance peak located at the
Dirac point E=0 with a scale independent value 4 /�e2 /h
�gc�E=0, f��8 /�e2 /h �including the aspect ratio factor of
2�, depending on the strength of the random magnetic field f .
The symmetric splitting of the two other peaks �E�p /q , f�
increases with the square root of the applied perpendicular
magnetic field expressed by the rational number p /q times a
flux quantum h /e per plaquette, and linearly with the ampli-
tude of the random magnetic-flux disorder f . The scale inde-
pendent conductance peak value of these critical quantum
Hall states is gc�1.12e2 /h �including the aspect ratio factor
of 2�, independent of disorder strength and applied magnetic
field. The splitting of the n=0 conductance peak allows for a
Hall plateau with both �xy =0 and �xx=0, except at E=0,
where the longitudinal conductance is finite due to the chiral
critical state.

A similar scenario, a splitting of the Landau band, and an
additional central critical state with a ln��E��2 singularity in
the density of state was previously reported for a two state
Landau model by Minakuchi and Hikami.54 They found di-
vergences of the localization length with an exponent �

=0.26 for the central state, which is not far away from our
result for the chiral critical state, and for the split Landau
band �=3.1, which is somewhat larger but still believed by
these authors to be compatible with the conventional quan-
tum Hall universality class. Presumably, the large value has
to be attributed to finite-size effects.

Our analysis of the critical eigenstates revealed the sub-
lattice polarization, known from the clean system at E=0, to
exist at least approximately also in the random magnetic-flux
disordered system for energies in the vicinity of the Dirac
point. Within the achieved uncertainty, the multifractal prop-
erties of the critical eigenstates in the n=0 Landau band
appeared to be the same. We found the quantum Hall critical
states parabolic f���s�� distribution, which is determined by
an ��0�=2.27�0.02 value, to be in accordance with the
multifractal properties of the chiral critical state close to the
Dirac point.
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